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General Stability Analysis of Periodic
Steady-State Regimes in Nonlinear
Microwave Circuits
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Abstract —The problem of analyzing the stability of periodic equilibrium
regimes in nonlinear microwave circuits is tackled by a general-purpose
computer-aided approach. By means of a perturbation technique, the search
for instabilities is reduced to a generalized eigenvalue equation expressed
in matrix form, and is then carried out by Nyquist’s analysis. The use of a
vector processor allows the computer time requirements to be kept well
within reasonable limits, even in the case of large-size problems. In
perspective, this could open the way to the complementation of existing
nonlinear CAD packages by an on-line facility for automatic stability
analysis.
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I. INTRODUCTION

‘ HIS PAPER is devoted to introducing a new numeri-
cal technique for analyzing the stability of periodic
steady-state regimes in nonlinear microwave circuits. This
problem is a very difficult one, and has been tackled in the
literature by a variety of approximations and limiting
assumptions (e.g., [1]-[6]). From time to time, the analysis
has been restricted to specific kinds of nonlinear devices,
and/or the representation of the perturbed regime has
been severely simplified, either by reducing the number of
spectral lines to be accounted for, or by resorting to the
concept of slowly changing perturbation.
On the other hand, the emphasis here is on generality. At
least in principle, our all-computer approach should be

0018-9480/85/0100-0030$01.00 ©1984 IEEE
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able to cope with almost any kind of realistic nonlinear
device models, and with the complex circuit topologies
encountered in practical microwave engineering applica-
tions. To do so, no restrictions are imposed on the time-
domain representation of the nonlinear devices. Further-
more, within the frame of a perturbation technique, we
take into account all the spectral lines arising from the
interaction of a perturbing signal with the nonsinusoidal
steady-state regime in the nonlinear part of the network.
As a result, the program can be used to search for instabili-
ties in a wide variety of nonlinear subsystems, such as
amplifiers, oscillators, and parametric circuits, with mini-
mum effort on the user’s side.

In exchange for these attractive features, the method is
purely numerical in nature, and makes no allowance for
physical intuition. Furthermore, in some cases, it is very
demanding in terms of computer time, since repetitive
calculations on large-order matrices may be required. Thus,
to ensure a good cost-effectiveness in the generality of
applications, the present approach is best implemented on
a “supercomputer” (Cyber 205 or similar); in fact, the
formulation adopted lends itself nicely to the development
of a highly vectorized code, allowing the hardware capabili-
ties of a vector processor to be fully exploited.

It is quite obvious that the validity of a numerical
technique cannot be demonstrated, but only checked, since
results are only available for particular cases. In this paper,
we present two different checks, as an attempt to enhance
the reader’s confidence in our approach.

The first one is essentially mathematical and concerns
the simple case of a monochromatic free-running oscillator
subject to slowly changing perturbations. This problem can
be solved in closed form, and the explicit stability condi-
tions given by Hansson and Lundsrtom [5] and Kurokawa
[6] are reobtained as particular cases of the general equa-
tions. Thus, it is the inherent difficulty of the general
stability problem that warrants the mathematical complex-
ity of our method: simple situations generate simple solu-
tions which agree with classic ones.

The second check is a large-size numerical application
concerning a real-world circuit, and is chosen in such a way
that the results of the stability analysis can easily be
predicted on a qualitative ground by physical intuition. In
fact, we find that the hysteresis cycle appearing in the
power transfer characteristic of a microstrip frequency
divider is associated with the existence of unstable steady-
state regimes.

II. DESCRIPTION OF THE METHOD

We consider the nonlinear network schematically de-
picted in Fig. 1, with 4 representing an arbitrary linear
multiport, and 4" the nonlinear part of the circuit, usually
a set of semiconductor devices. The currents and voltages
at the ports of A" are used as the state variables. For the
sake of simplicity, in the following we will make the
assumption that both A" and 4} are one-ports—the
extension to the general case is straightforward and only
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LINEAR v
SUBNETWORK
()

NONLINEAR
SUBNETWORK
(47)

Fig. 1. Schematic representation of general nonlinear network.

requires scalar quantities (such as currents or admittances)
to be replaced by their vector counterparts.

The nonlinear subnetwork A" is described by the time-
domain equation

f[F*liW' (1)

where f is nonlinear and analytically known, but otherwise
arbitrary. For the sake of brevity, the following operators
have been introduced in (1):

-, Fis Fho, o Fo] =0

P E%a(t)(m>0)

Fa=a(t)

F‘"’aEft du, " du2-~-fum_1duma(um)(m>0)
2

where a(t) is any function of time.

The linear subnetwork .47 is represented at any angu-
lar frequency w by the usual frequency-domain equation
(Fig. 1)

I=-Y(«)V+J(w) (3)

where I,V are current and voltage phasors, Y(w) is the
admittance, and J(w) is the Norton equivalent current
source of any free generator acting within .47, at frequency
o (e.g., the pump of a parametric divider).

We now assume that the circuit can support a time-peri-
odic steady-state electrical regime with a fundamental an-
gular frequency w,. The state variables will thus have the
expressions

o0

f(t)=Re[ ikexp(jkwot)]

k=0

. 0
o(t) =Re[ Yy f/kexp(jkwot)} (4)
k=0
where ~ denotes steady-state quantities. i(¢), () satisfy
the nonlinear equation (1), while their kth harmonics
I,,V, are related by (3) at w = kw,. For a given circuit
topology, I, and ¥, may easily be obtained by a circuit
analysis based on the harmonic-balance technique {7].
If the equilibrium condition is perturbed by injection of
a small signal of the form

exp {(o + jow)t} (5)

where « is not an integer multiple of w, and o >0, all
possible intermodulation products of w and w, will be
generated. However, since the perturbing signal is small,
higher order terms in » may be neglected, so that the
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resulting perturbation takes the form

i AlLexp { j(w+ kwo)t}]

k=—o0

li AVkexp{j(w+kw0)t}}

k=—o0
(6)
where AI,, AV, are a priori undetermined complex ampli-
tudes.
Now, let us consider the perturbed regime

i(t)=i(¢)+Ai(¢)
v(t)=#(t)+Av(2) (7)

which must satisfy the network equations (1) and (3). From
(3) we get

Ai(t)= exp(ot)-Re[

Av(t) = exp(ot)-Re[

Al =—-Y(w— jo+kwy) AV, (8)

so that only the AV,’s (say) are independent unknowns. On
the other hand, replacing (7) into (1) under the assumption
of a small perturbation yields

m=—1 m

Fri+ 2L

) 7 -F’"Au]=0 (9)

where the partial derivatives are evaluated in steady-state
conditions ( ~ ) and
x,,=F"i,

(10)

The operators F™ appearing in (9) and (10) are the same
as defined by (2).

Since the steady-state regime is periodic, we can intro-
duce the Fourier expansions

—-l<mxn.
Ym=F"0, -

af < :
| P:V:‘w Coupexp (Jpwot)
) - ,
# = Y Dmpexp(jpwot). (11)
m |~ p=—00

Because f is analytically known, so are its derivatives;
making use of (4), the coefficients C,,,, D, » may then be

mp?

computed by the Fast Fourier Transform in a straight-
forward way. From (6) and (8), we further obtain
(=lsms=n)

F™Ai=—exp(at)
~Re[ Y {o+ j(e+kawy)} "Y(w— jo+ ko)
k=—-o0
. AVkexp{j(w+kw0)t}]
F"Av =exp(ot)

-Re[ki {a+j(w+kw0)}m

-AVkexp{j(w+kw0)t}]. (12)

Now we make use of (11) and (12) to rewrite (9) in the
form

ep(jor) Y X

p=—00 k=—00

Re

-exp{j(p+k)w0t}Ak,pAVk =0 (13)
where

Ap,p= )y {0+j(w+kwo)}mDmp*Y(w—jo-l—kwo)

m=—1

: i {0+ j(w+kw)}"C,,. (14)

m=-—1

Finally, the double summation in (13) is rearranged by
letting s = p + k and using s and k as the new summation
indexes. Equation (13) is thus turned into

re| £

§=—00

exp { j(w+swy)t}- Y A -2 AV [=0.

T (15)

The left-hand side of (15) is a continuous function of
time having a discrete frequency spectrum. In order to
make it identically equal to zero, we must impose that all
the spectral lines separately vanish, that is,

o]
Z Ak,s~kAVk=0
k=-00
—0<s <.

(16)

Equation (16) is a linear homogeneous system for the
unknowns AV,. If we denote by A(o + jw) its determinant,
then the possible unstable perturbations can be found by
solving the generalized eigenvalue problem

Ao + jw)=0. (17)

When no eigenvalues have a positive real part, the
steady-state regime is asymptotically stable. An eigenvalue
lying in the right-hand half of the complex plane means
that one of the following kinds of instability will occur in
the circuit:

1) for w =0, the amplitudes of the spectral lines of the
steady-state regime, once perturbed, will grow exponen-
tially in time;

2) for w + 0, an exponentially increasing power will be
transferred from the steady-state regime to a spurious
oscillation whose low-level fundamental frequency is w.

In the first case, the equilibrium condition is intrinsically
unstable. In the second case, the present analysis can only
detect the onset of the spurious oscillation, but is unable to
find its steady-state amplitude and frequency, because of
its perturbation approach.

The stability analysis is considerably simplified by two
important properties of the determinant A, to be discussed
below. First, as a straightforward consequence of being

C, Cx,» D,_,= Dy, (because the partial derivatives

—p = Cmpr »
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in (11) are real) and Y(o + jw) =Y*(o — jw), we get

Ak,s—k(o+jw)=Atk,-(s—k)(0—jw) (18)

where * denotes the complex conjugate. From (18) follows

A(o + jw)=A%*(o — jw) (19)

so that the eigenvalues occur in complex conjugate pairs, as
could be expected.

As a second point, we will show that, when the matrix is
of infinite order, A is a periodic function of w.

In fact, by inspection of (14) we find that, for fixed p

and k large and positive

A ,=(~1)"4,,. (20)

Furthermore, if 4 is an integer, since C,, and D, , are
independent of w, (14) yields

Ak,sfk{o +j(e+ h“’o)} = Ak+h,(s+h)—(k+h)(o + jw)

(21)
so that adding hw, to « merely results in shifting the
system matrix by & places in the direction of its principal
diagonal. Due to (20), we thus have

A{o+ j(0+hwy)) =(-1)"A(c + jo).

—k,p

(22)

In most practical cases, one is essentially interested in
determining the stability of the steady-state regime rather
than the solutions of (17). This can be accomplished by
applying Nyquist’s analysis to the determinant A(o +jw)
{81.

Since (14) is an integer function of the passive-network
admittance, which is positive-real, A has no singularities
for ¢ > 0 (except at infinity). On the imaginary axis, pro-
vided that losses in the passive circuit be taken into account,
the determinant has a pole of order / at each of the points
w=kw, (—o0< k<o), as clearly appears by inspection
of (14). Thus, the Nyquist equation may be written in the
form

Ny=N,— Noo+%NIZ-%NIP

(23)

where
Ny number of clockwise encirclements of the origin
made by A(jw) as w is swept from — o0 to + c0;
N, number of zeros of A(o + jw) lying in the right-
half complex plane;
- N, contribution to N, arising from the singular

behavior of A(o + jw) at infinity (i.e., as (o +
jw) —> oo with ¢ > 0);
N, number of zeros of the determinant lying on the
imaginary axis;
number of poles of the determinant lying on the
imaginary axis.

In principle N, could be found directly from the Nyquist
plot of A(jw); however, the existence of such zeros is
physically anomalous and numerically impossible, and will
thus be disregarded (N;, = 0).

No matter what the values of N, and N,,, because of
(22), A(jw) makes n counterclockwise encirclements of the
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origin when w is swept across any interval of length 2w,,.
Equation (23) shows that such encirclements derive from
the singularity of A at infinity. Since the function

exp{::—:(c+ jw)} (24)

exhibits exactly the same behavior, we may conclude that
(24) and A have the same singularity as (o + jw) — co(o >
0). :

Now, consider the function

(25)

It is clear that (25) has the same zeros as A(o + jw) but
is finite for (o + jw) = 000 > 0), ie, for it N, = 0. Thus,
it is convenient to use (25) instead of A alone in the
Nyquist analysis. Furthermore, (25) is a periodic function
of w with period w,, so that only the range [0, w,] need be
considered to obtain the complete Nyquist plot. This repre-
sents an essential feature in view of the practical imple-
mentation of the above theory, since a numerical evalua-
tion of the behavior of A(jw) on the entire j axis would be
impossible due to the complicated expression of the
determinant. Because of this periodicity, (25) has a pole of
order [ in any interval of the j axis of length w,.

We may now write the Nyquist equation for (25) refer-
ring to the interval [0, w,] in the form

exp{— %Z—(o + jw)}-A(o + je).

(26)

where

n, number of zeros of A(c+ jw) lying in the region
[0 < @<, o>0];

ny number of clockwise encirclements of the origin made
by A(jw) as w is swept from 0 to w,,.

When /=0, the Nyquist plot is closed and bounded.
When /> 0, it is unbounded but includes / infinite semi-
circles (described in the clockwise sense) which close it at
infinity [8]. Finally, because of (19), the plot is symmetric
with respect to the real axis, so that one only has to study
the range [0, w, /2] in order to complete the analysis.

For practical computation, the infinite problem (16)
must be truncated to a finite dimension, i.e.,

N

Z Ak,s—kAVk=0
k=—-N
-N<s<N.

(27)

When doing so, the integer N should be carefully chosen if
physically and numerically accurate results are sought. The
Fourier expansions of the derivatives (11) must be trun-
cated, too, by retaining a finite number N, of harmonics.
Then (14) shows that, in order to approximately preserve
the periodicity of (25) at least in the interval [0, wy], we
must take

N-Np>1 (28)
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the degree of approximation being established by the actual
value of the left-hand side of (28).

In some cases, such as circuits containing p—n or Schot-
tky junctions driven into forward conduction, the deriva-
tives may be quite broadbanded because of the exponential
functions appearing in the device equations. A number of
harmonics of the order of 30 or more may be required for
an accurate representation of the derivatives, which implies
N = 50 to obtain a 5-percent accuracy, according to (28).
The numerical problem then becomes very large, since the
size of the truncated system (27) is of the order of one
hundred. In practice, such very stringent requirements may
often be considerably released, as we will show in the next
section. In any case, the cost-effectiveness of the solution
can be dramatically improved by implementation of the
method on a vector processor; in fact, the matrix formula-
tion described above is ideally suited for taking advantage
of the high computational power of a vector hardware,
especially for large-size problems.

III. EXAMPLES OF APPLICATION

A. Monochromatic Free-Running Oscillator Subject to
Slowly Changing Perturbations
We consider a steady-state regime of the form
i() =Re[Texp (jwot )]
(1) =Re[Vexp(jw,t)] (29)

(all harmonics negligible) where ¥ = Vexp( Joo)(V > 0). The
stability analysis of (29) will be restricted to those per-
turbations that are slowly changing in time with respect to
the fundamental, i.e., can be reduced to

Ai(t) =exp(ot)-Re[ATexp{ j(w+ wy)t}]

Av(t) =exp(ot)-Re[AVexp { j(w+wy)t}] (30)
where

(31)

Due to (29) and (30), only the s=k =1 term appears in
the solving system (16), so that the eigenvalue equation
(17) is reduced to

Ao+ jo)=A;,=0.

lo + jool < wp.

(32)

The nonlinear device can be described in terms of a
“device admittance” when its time-domain equation has
the general form

- Y a,F"i+F[F %, -, Fv]=0

m=—1

(33)

which is a particular case of (1). Just for the sake of clarity,
in the following we will make use of the simplified expres-
sion:

—i(t)+:F[U(t),%¥]==O. (34)

From (34) and (11), we obtain Cy = —1, C,,, = 0 (for m or

p#0), D,,=0 (for m>1), so that (32) reduces to
Ay =Dy + {0+ j(w+w)} Do+ ¥(wy+w—jo)=0
(35)
or, by the assumption of slowly changing perturbation

Do+ {0+ j(0+00)) Dy + V(@) + 9% (6~ ja) =0

(36)
the derivative being evaluated at & = w,,.
We now introduce the quantity

I 1 pa
YD(w,V)=I£7= ;TT/,/; F[Vcosx, — wVsinx]e 7*dx
(37)

which is conventionally named “device admittance.” From
(37) and the expansions (11), we get

a .
W{VYD(“” V)} = D00+ J“’oDm

+exp(— j2¢0)- { Dy — jwoDyy )

J

%Yp(w,V)=ij—jexp(—j2¢0)D12 (38)

all derivatives being evaluated in steady-state conditions.
Note that, for a slowly changing perturbation, Dy, and D,,
must be negligible, so that (38) can be reduced to

dY,
D=7,
ay, ay,
DOO;YD(""O’V)—FV?I_/D_—‘*’OT‘OD' (39)

Finally, we define the admittance
Yr(w,V)=Gp(w,V)+ jBr(w,V)=Yp(w,V)+¥(w)
(40)
and remember the steady-state equilibrium condition
Y (wgy, V') =0, to obtain from (36)

Y, oY,

(0= jo) 50 =—Vop (41)
or
[2¢ dB; 3G _ 9Gy 9By
s = Im V3V -7 AV Jw W Jw ' (42)
Iy oYy |*
dw e
The stability condition o < 0 then becomes
3G, dB, 9B, 4G,
W G0 W e 0 (43)

as was found by Hansson and Lundstrom [6] and previ-
ously by Kurokawa [5] (the latter for the case of a purely
resistive nonlinear device).

B. Microstrip Parametric Frequency Divider

In this section, we apply the stability analysis to the
nonlinear microstrip network whose topology is schemati-
cally illustrated in Fig. 2. This circuit was designed (in the
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1 3 5
g 2 4 []
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Fig. 2. Transmission-line model of microstrip frequency divider.

VARACTOR

TABLE1
MICROSTRIP DIMENSIONS

n. width (mm) Length {mm) n. width (mm) Length (mm)

8.9 25.4 8 1.1 13.1

8.4 18.4 9 6.1 20.7

6.6 34.1 10 5.1 22.5

6.8 23.6 11 4.6 14.3

8.1 19,9 12 3.2 20.6

7.7 22,0 13 1.3 24.4

N N e W N e

8.9 14.0

SUBSTRATE: -1.58 mm DUROID |

way described in [9]) to act as a frequency divider by 2 in a
500-MHz band centered at 2.375 GHz (input frequency),
with an insertion loss in the 4-6-dB range at a nominal
input power level of 9 dBm. The divider geometry is given
in Table I in terms of microstrip widths and lengths; all
diode parameters including parasitics are available from
the manufacturer’s catalog (ALPHA Industries Silicon
abrupt-junction varactor model DVH 6733-07).

For the present case, the nonlinear device is a microwave
varactor represented in the time domain by [10]

ex( & )——1
P\XKk,T
dv

C (1—3)_Y+c e ( = )——0 (44)
T0 ® Do CXP XKBT dt—_ )

—i+ I

+

where

I saturation current,

e electron charge,

x slope (or ideality) factor of current,

Ky  Boltzmann’s constant,

T absolute temperature,

¢ diffusion potential, ,

Cr, zero-bias depletion-layer (transition) capacitance,
Cpe zero-bias diffusion capacitance.

The varactor is unbiased and is thus drawn into forward
conduction during a considerable fraction of the RF cycle.
However, the calculations show that the forward voltage is
always definitely less than the diffusion potential, so that
no numerical ill-conditioning can occur in (44). Thus, (44)
can be used to obtain explicit expressions for the deriva-
tives; from (14), the coefficients are then found to be

A, =D0p+{o+j(w+kw0)}D1p—8‘1,0Y(w—jo+kw0),
8y=1 forp=0, (45)

Due to the exponentials appearing in (44), the deriva-
tives usually have a considerably broader bandwidth than

s P
0 otherwise.
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Truncation error introduced when reducing the infinite solving
system to-a finite size.

T T T T
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Fig. 3.

the steady-state regime. For the present purposes, ten
frequency components [9] were used in (4) to accurately
describe the equilibrium voltage and current waveforms; in
the same conditions, N, = 35 harmonics were required to
compute the derivatives with a comparable accuracy by the
Fourier expansions (11) truncated at p = + N,,. Taking
N =50 in (27), which means a system of order 101, then
should allow the Nyquist plots to be computed with a
maximum error of about 7 percent (for 0<w <),
according to (28). This prediction can be checked from Fig.
3, where we plot the deviation from -periodicity of (25) in
the range [0, w,] against the size of the truncated system,
2N +1. The deviation is defined as

A(jesp) +A(0) |
O (46)

since, for the present case, n =1 in (25). The figure shows
that D =8.1 percent for the size of 101, which is consid-
ered satisfactory for practical purposes.

In the following, we first discuss in some detail a large-

D =100

~ size solution of the stability problem based on the choices

Np =35, N=50, and making use of 250 frequency points
evenly spaced in the range [0, w,] to draw the Nyquist
plots. This is mainly intended to show that our method can
indeed produce solutions-of high numerical accuracy (which
may be required in some critical cases), and that such
solutions may still be quite cheap when using a vectorized
code on a supercomputer. We then briefly comment on the
possible tradeoffs between numerical accuracy and com-
puter time requirements, and on the impact of this on the
physical accuracy of the solutions.

In view of the implementation of the numerical ap-
proach on a vector processor, we note the following.

1) The passive network admittance appearing in (14) can
be computed in parallel (in the pipeline sense) at all -
frequencies (w + kw,) by existing vectorized programs for
microwave circuit analysis [11].. In this ‘way, the time
required for admittance calculations is reduced by more
than one order of magnitude with respect to conventional
computational methods on scalar machines [11].
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Fig. 4. Power transfer characteristic of parametric frequency divider.

2) Because of (14) and (27), the system matrix has a
band structure with a total bandwidth 2N, +1. Thus, it
can be computed and stored diagonal-wise with a unique
vector operation. It is then rearranged column-wise (as
required for determinant computation) making use of the
gather-scatter capabilities of the vector processor.

3) Thanks to 1) and 2), the CPU time requirements are
practically reduced to determinant computation only. The
latter is clearly a highly vectorizable process which can be
carried out most efficiently by existing mathematical
routines (e.g., the vectorized library MAGEV on a Cyber
205).

As a result, a 250-point Nyquist plot can be found in
about 16 s on a Cyber 205 (in the case N, =35, N = 50),
as opposed to the 545’s that are required to carry out the
same calculations on a CDC 7600, with a speedup factor of
34. In this way, the numerical method becomes practically
usable even for the most demanding applications.

Some results concerning the microstrip frequency divider
of Fig. 1 are reported below. Fig. 4 is a plot of the power
efficiency of the divider versus available input power at an
input frequency of 2.5 GHz. To obtain this curve, the
circuit of Fig. 1 was analyzed by the harmonic-balance
technique at several input-power levels. In practice, the
negative-slope section of the curve 4B is replaced by a
narrow hysteresis cycle, in much the same way as it is
found in the different, but related, case of parametric
multipliers [12]. This situation is closely matched by the
results of the stability analysis. Fig. 5 gives the Nyquist
plot for the nominal steady-state regime (point N in Fig.
4); the curve does not encircle the origin, denoting a stable
spurious-free condition. On the other hand, the Nyquist

plot for a point in the negative-slope region (point C in_

Fig. 4) is shown in Fig. 6; in this case, we have one
clockwise encirclement, denoting the existence of one posi-
tive real eiger_lvalue. The corresponding equilibrium regime
is thus intrinsically unstable and cannot exist in practice.
The curves in Figs. 5 and 6 were computed over the full
range [0, wy]. According to the theory developed in Section
I, the first half of each Nyquist plot (0 < w < w,/2),
which is represented by a solid line in the figures, should
be the exact mirror image (with respect to the real axis) of
the remaining half, drawn by a dotted line. This condition
is very closely met by the diagrams of Figs. 5 and 6, which

POINT N

Im (1) —_— o(.,<£’23

w0

He (4]

Increasing o

Fig. 5. Nyquist plot for a stable equilibrium condition of the frequency
divider (nominal operating regime).

provides a clear check of the excellent accuracy of our
results.

The information presented so far clearly shows that the
computer time required to carry out a stability analysis can
be considerably reduced (with respect to the high-accuracy
solution discussed above) with no dramatic impairment of
the final results. First of all, it is quite obvious that the
calculations can actually be restricted to the range [0, w, /2]
in routine applications, thus dividing by 2 the analysis cost.
Furthermore, Fig. 3 suggests that the size of the truncated
system can be reduced to some extent without a substantial
degradation of the Nyquist plot, since the periodicity error
actually drops more rapidly than one would predict, based
on (28). For instance, a system of size 41 (N = N, = 20)
yields a deviation from periodicity of about 10 percent in
the present case, which is still acceptable for practical
purposes. Finally, the number of frequency points used to
build the Nyquist plot can also be decreased, as can be
inferred from Figs. 5 and 6, provided that care be taken in
order not to loose control on the plot behavior around the
origin. In summary, it was found that a satisfactory stabil-
ity analysis of the parametric divider can be carried out on
a Cyber 205 in less than 1s, which is well below the time
required for a typical nonlinear design. Thus, the idea of
complementing existing general-purpose nonlinear CAD
packages (e.g., [7]) by an on-line facility for automatic
stability analysis becomes quite attractive.

A reduction of the number of harmonics to be dealt with
in the analysis also tends to waive the need for an accurate
description of both the nonlinear devices and the passive
network at extremely high microwave frequencies. As an
example, in the parametric divider case discussed so far,
carrying out the stability analysis with N = 20 means that
the highest frequency of interest is about 25 GHz, which is
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Fig. 6. Nyquist plot for an intrinsically unstable equilibrium condition
of the frequency divider (hysteresis region).

well within the reach of present-day modeling capabilities.
A substantially similar situation can be expected to occur
in the case of a higher fundamental frequency, since then
the number of significant harmonics of the steady-state

regime becomes smaller, which in turn limits the number of

spectral lines of the perturbation that must be accounted
for. Generally speaking, the ability to keep track of any
number of harmonics which is typical of the present com-
puter approach should allow the designer to find the best
compromise between physical and numerical accuracy in
each particular case.
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