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General Stability Analysis of Periodic
Steady-State Regimes in Nonlinear

Microwave Circuits

VITTORIO RIZZOLI, MEMBER, IEEE, AND ALESSANDRO LIPPARINI

Abstract —The problem of analyzing the stability of periodic equilibrium

regimes in nonlinear microwave circuits is tackfed by a generaf-purpose

computer-aided approach. By means of a perturbation technique, the search

for instabilities is rednced to a generalized eigenvahre equation expressed

in matrix form, and is then carried out by Nyqnist’s analysis. The use of a

vector processor aflows the compnter time requirements to be kept well

within reasonable limits, even in the case of large-size probiems. In

perspective, this conld open the way to the complementation of existing

nonlinear CAD packages by an on-line facility for automatic stability

analysis.
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I. INTRODUCTION

T HIS PAPER is devoted’ to introducing a new numeri-

cal technique for analyzing the stability of periodic

steady-state regimes in nonlinear microwave circuits. This

problem is a very difficult one, and has been tackled in the

literature by a variety of approximations and limiting

assumptions (e.g., [1]–[6]). From time to time, the analysis

has been restricted to specific kinds of nonlinear devices,

and/or the representation of the perturbed regime has

been severely simplified, either by reducing the number of

spectral lines to be accounted for, or by resorting to the

concept of slowly changing perturbation.

On the other hand, the emphasis here is on generality. At

least in principle, our all-computer approach should be
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able to cope with almost any kind of realistic nonlinear

device models, and with the complex circuit topologies

encountered in practical microwave engineering applica-

tions. To do so, no restrictions are imposed on the time-

domain representation of the nonlinear devices. Further-

more, within the frame of a perturbation technique, we

take into account all the spectral lines arising from the

interaction of a perturbing signal with the nonsinusoidal

steady-state regime in the nonlinear part of the network.

As a result, the program can be used to search for instabili-

ties in a wide variety of nonlinear subsystems, such as

amplifiers, oscillators, and parametric circuits, with rnini-

murn effort on the user’s side.

In exchange for these attractive features, the method is

purely numerical in nature, and makes no allowance for

physical intuition. Furthermore, in some cases, it is very

demanding in terms of computer time, since repetitive

calculations on large-order matrices maybe required. Thus,

to ensure a good cost-effectiveness in the generality of

applications, the present approach is best implemented on

a “ supercomputer” (Cyber 205 or similar); in fact, the

formulation adopted lends itself nicely to the development

of a highly vectorized code, allowing the hardware capabili-

ties of a vector processor to be fully exploited.

It is quite obvious that the validity of a numerical

technique cannot be demonstrated, but only checked, since

results are only available for particular cases. In this paper,

we present two different checks, as an attempt to enhance

the reader’s confidence in our approach.

The first one is essentially mathematical and concerns

the simple case of a monochromatic free-running oscillator

subject to slowly changing perturbations. This problem can

be solved in closed form, and the explicit stability condi-

tions given by Hansson and Lundsrtom [5] and Kurokawa

[6] are reobtained as particular cases of the general equa-

tions. Thus, it is the inherent difficulty of the general

stability problem that warrants the mathematical complex-

ity of our method: simple situations generate simple solu-

tions which agree with classic ones.

The second check is a large-size numerical application

concerning a real-world circuit, and is chosen in such a way

that the results of the stability analysis can easily be

predicted on a qualitative ground by physical intuition. In

fact, we find that the hysteresis cycle appearing in the

power transfer characteristic of a rnicrostrip frequency

divider is associated with the existence of unstable steady-

state regimes.

II. DESCRIPTION OF THE METHOD

We consider the nonlinear network schematically de-

picted in Fig. 1, with #L representing an arbitrary linear

multiport, and # the nonlinear part of the circuit, usually

a set of semiconductor devices. The currents and voltages

at the ports of X are used as the state variables. For the

sake of simplicity, in the following we will make the

assumption that both X’ and ~L are one-ports—the

extension to the general case is straightforward and only

I I 1

Fig. 1. Schematic representation of generaf nonlinear network.

requires scalar quantities (such as currents or admittances)

to be replaced by their vector counterparts.

The nonlinear subnetwork Y is described by the time-

domain equatioo

f [F-ii,.. ., Fni; F-’v,.. ., F”v]=O (1)

where f is nonlinear and analytically known, but otherwise

arbitrary. For the sake of brevity, the following operators

have been introduced in (l):

Fma=~a(t)(nz>O)

FOa-a(t)

(2)

where C-I(t) is any function of time.

The linear subnetwork W“ is represented at any angu-

lar frequency a by the usual frequency-domain equation

(Fig. 1)

l=– Y(0) V+ J((.J) (3)

where 1, V are current and voltage phasors, Y(Q) is the

admittance, and J(u) is the Norton equivalent current

source of any free generator acting within ~~ at frequency

u (e.g., the pump of a parametric divider).

We now assume that the circuit can support a time-peri-

odic steady-state electrical regime with a fundamental an-

gular frequency Uo. The state variables will thus have the

expressions

[
i(t) =Re ~ ~~exp(jkuOt)

k=O 1
[ti(t)=Re ~ fi~exp(jkaot) 1 (4)

k=O

where - denotes steady-state quantities. i(t),ti(t)satisfy

the nonlinear equation (l), while their k th harmonics

~k, fik are related by (3) at o = kao. For a given circuit

topology, ~k and fik may easily be obtained by a circuit

analysis based on the harmonic-balance technique [7].

If the equilibrium condition is perturbed by injection of

a small signal of the form

exp{(u+ju)t} (5)

where u is not an integer multiple of U. and u >0, all

possible intermodulation products of Q and tio will be

generated. However, since the perturbing signal is small,

higher order terms in a may be neglected, so that the
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resulting perturbation takes the form

Ai(i)=exp(ut)”Re
[

~ A1,exp{j(~+koO)t}
k=–co 1

Au(t) =exp(ut).Re
[

~ AV,exp{j(Q + k~,)t}
k=–w 1

(6)

where A 1~, AV~ are a priori undetermined complex ampli-

tudes.

Now, let us consider the perturbed regime

i(t) =;(t) +Ai(t)

u(t) =fi(t)+Ao(t) (7)

which must satisfy the network equations (1) and (3). From

(3) we get

A1~=– Y(ti-ju+koO)AV~ (8)

so that only the AV~’s (say) are independent unknowns. On

the other hand, replacing (7) into (1) under the assumption

of a small perturbation yields

n

=[

13f df
~ _. FmAi+—

~Ym . 1.FmAu=Q(9)
~=—1 m

where the partial derivatives are evaluated in steady-state

conditions ( - ) and

x~ = Fmi,
–l~m~n.

y~=F*v,
(lo)

The operators Fm appearing in (9) and (10) are the same

as defined by (2).

Since the steady-state regime is periodic, we can intro-

duce the Fourier expansions

6’f

axm_ = ~ C~pexp(jpaOt)
~=. w

af

aym -
= ~ D~Pexp(jpq#). (11)

~=. m

Because f is analytically known, so are its derivatives;

making use of (4), the coefficients C~P, D~P may then be

computed by the Fast Fourier Transform in a straight-

forward way. From (6) and

(–l~nz<n)

FrnAi = –exp(ut)

[
“Rek=~m{”+j(~+

(8), we further obtain

kuO)}mY(u – ju + kQO)

. AV~exp{j(ti+kuO)t}
1

FmAu = exp(ot)

[
“Re k=~m{u+j(u+k%)}m

1.AV~exp { j(~ + ktiO)t} . (12)

Now we make use of (11) and (12) to rewrite (9) in the

form

r w m

L p=–~k..w

1
.exp{j(p +k)uot}A~,PAV~ =0 (13)

where

n

~=_[
n

Finally, the double summation in (13) is rearranged by

letting s = p + k and using s and k as the new summation

indexes. Equation (13) is thus turned into

rm m 1

(15)

The left-hand side of (15) is a continuous function of

time having a discrete frequency spectrum. In order to

make it identically equal to zero, we must

the spectral lines separately vanish, that is,

impose that all

(16)

Equation (16) is a linear homogeneous system for the

unknowns AV~. If we denote by A( u + ja ) its determinant,

then the possible unstable perturbations can be found by

solving the generalized eigenvalue problem

A(u+j~)=O. (17)

When no eigenvalues have a positive real part, the

steady-state regime is asymptotically stable. An eigenvalue

lying in the right-hand half of the complex plane means

that one of the following kinds of instability will occur in

the circuit:

1) for Q = O, the amplitudes of the spectral lines of the

steady-state regime, once perturbed, will grow exponen-

tially in time;
2) for o # O, an exponentially increasing power will be

transferred from the steady-state regime to a spurious

oscillation whose low-level fundamental frequency is O.

In the first case, the equilibrium condition is intrinsically

unstable. In the second case, the present analysis can only

detect the onset of the spurious oscillation, but is unable to

find its steady-state amplitude and frequency, because of

its perturbation approach.

The stability analysis is considerably simplified by two

important properties of the determinant A, to be discussed

below. First, as a straightforward consequence of being

C~_P = C~p, Dm_P = D:P (because the partial derivatives
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in (11) are real) and Y(IJ + ju) = Y*(u – ju), we get

A~,,_~(u +j@)=A~~, -(,-k) (u–j@) (18)

where * denotes the complex conjugate. From (18) follows

A(u+jQ)=A*(u–jQ) (19)

so that the eigenvalues occur in complex conjugate pairs, as

could be expected.

As a second point, we will show that, when the matrix is

of infinite order, A is a periodic function of u.

In fact, by inspection of (14) we find that, for fixed p

and k large and positive

A -,,p = (-l)”A,,P. (20)

Furthermore, if h is an integer, since C~P and D~P are

independent of u, (14) yields

A ~>.-k{” + j(ti + h%)) ‘A~+~,(,+~)-(k+h)(CI + .@)

(21)

so that adding h 00 to u merely results in shifting the

system matrix by h places in the direction of its principal

diagonal. Due to (20), we thus have

A{a+j(ti +huO)}=(-l)”~A(u+ jti). (22)

In most practical cases, one is essentially interested in

determining the stability of the steady-state regime rather

than the solutions of (17). This can be accomplished by

applying Nyquist’s analysis to the determinant A( u + j o )

[8].

Since (14) is an integer function of the passive-network

admittance, which is positive-real, A has no singularities

for u >0 (except at infinity). On the imaginary axis, pro-

vided that losses in the passive circuit be taken into account,

the determinant has a pole of order 1 at each of the points

u = ktiO ( – m < k < m), as clearly appears by inspection

of (14). Thus, the Nyquist equation may be written in the

form

NT= Nz – Nm + ~iVIz – ~NIp (23)

where

NT number of clockwise encirclements of the origin

made by A( jti) as w is swept from – co to + co;

N= number of zeros of A( u + ja) lying in the right-

half complex plane;

– NW contribution to NT arising from the singular

behavior of A(u + j~) at infinity (i.e., as (u +

ju)+ m with u > O);

N Iz number of zeros of the determinant lying on the

imaginary axis;

NIP number of poles of the determinant lying on the

imaginary axis.

In principle NIZ could be found directly from the Nyquist

plot of A( jco); however, the existence of such zeros is
physically anomalous and numerically impossible, and will

thus be disregarded (Nlz = O).

No matter what the values of Nz and N[P, because of

(22), A( ja) makes n counterclockwise encirclements of the

33

origin when u is swept across any interval of length 2 tie.

Equation (23) shows that such encirclements derive from

the singularity of A at infinity. Since the function

(24)

exhibits exactly the same behavior, we may conclude that

(24) and A have the same singularity as (u + jti) ~ m(u >

o).

Now, consider the function

exp (-~(u+jo)).A(o +jti). (25)

is

it

It is clear that (25) has the same zeros as A(o + ju) but

finite for (u + jti) ~ CO(O> O), i.e., for it N~ = O. Thus,

is convenient to use (25) instead of A alone in the

Nyquist analysis. Furthermore, (25) is a periodic function

of ~ with period tiO, so that only the range [0, QO] need be

considered to obtain the complete Nyquist plot. This repre-

sents an essential feature in view of the practical imple-

mentation of the above theory, since a numerical evalua-

tion of the behavior of A( ju ) on the entire j axis would be

impossible due to the complicated expression of the

determinant. Because of this periodicity, (25) has a pole of

order 1 in any interval of the j axis of length Uo.

We may now write the Nyquist equation for (25) refer-

ring to the interval [0, Qo] in the form

1
nz=n~+—

2
(26)

where

n z number of zeros of A( o + ja) lying in the region

[o~@<6Jo,u>o];
n ~ number of clockwise encirclements of the origin made

by A( j~) as u is swept from O to tie.

When 1= O, the Nyquist plot is closed and bounded.

When 1>0, it is unbounded but includes 1 infinite semi-

circles (described in the clockwise sense) which close it at

infinity [8]. Finally, because of (19), the plot. is symmetric

with respect to the real axis, so that one only has to study

the range [0, ~0 /2] in order to complete the analysis.

For practical computation, the infinite problem (16)

must be truncated to a finite dimension, i.e.,

( f A,,, _, AV, =O
k=– N

(27)

When doing so, the integer N should be carefully chosen if

physically and numerically accurate results are sought. The

Fourier expansions of the derivatives (11) must be trun-
cated, too, by retaining a finite number ND of harmonics.
Then (14) shows that, in order to approximately preserve

the periodicity of (25) at least in the interval [0, @o], we

must take

N–ND>>l (28)
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the degree of approximation being established by the actual

value of the left-hand side of (28).

In some cases, such as circuits containing p – n or Schot-

tky junctions driven into forward conduction, the deriva-

tives may be quite broadbanded because of the exponential

functions appearing in the device equations. A number of

harmonics of the order of 30 or more may be required for

an accurate representation of the derivatives, which implies

N >50 to obtain a 5-percent accuracy, according to (28).

The numerical problem then becomes very large, since the

size of the truncated system (27) is of the order of one

hundred. In practice, such very stringent requirements may

often be considerably released, as we will show in the next

section. In any case, the cost-effectiveness of the solution

can be dramatically improved by implementation of the

method on a vector processor; in fact, the matrix formula-

tion described above is ideally suited for taking advantage

of the high computational power of a vector hardware,

especially for large-size problems.

III. EXAMPLES OF APPLICATION

A. Monochromatic Free-Running Oscillator Subject to

Slow& Changing Perturbations

We consider a steady-state regime of the form

;(t)=Re [iexp( jaOt)]

fi(t)=Re[~exp (jtiOt)] (29)

(all harmonics negligible) where fi= Vexp( j@O)(V > O). The

stability analysis of (29) will be restricted to those per-

turbations that are slowly changing in time with respect to

the fundamental, i.e., can be reduced to

Ai(t)=exp(ut).Re (A1exp{j(ti+oO)t}]

Au(t) =exp(ot).Re [AVexp{j(u+tiO)t}] (30)

where

la+ jai << 6J0. (31)

Due to (29) and (30), only the .s= k = 1 term appears in

the solving system (16), so that the eigenvalue equation

(17) is reduced to

A(u+jti)=AIO=O. (32)

The nonlinear device can be described in terms of a

“device admittance” when its time-domain equation has
the general form

- ~ a~Fmi+F’[F-’u,. . ., F’%]=0 (33)
~=—[

which is a particular case of (l). Just for the sake of clarity,

in the following we will make use of the simplified expres-

sion:

–i(t)+F[u(t), ~]=O. (34)

From (34) and (11), we obtain Cm = – 1, C~P = O (for m or

p + O), D~P = O (for m > 1), so that (32) reduces to

AIO=Dm+ {u+j(ti +uO)}DIO+ Y(uO+u-ju)=O

(35)

or, by the assumption of slowly changing perturbation

Dw+{u+j(~+ uO)}DIO +Y(tiO)+~. (~-ju) =0

(36)

the derivative being evaluated at @ = UO.

We now introduce the quantity

Y~(ti, V)= ~= ~/2nF[P’cosx, –OVsinx]e-~xdx
v rv~

(37)

which is conventionally named “device admittance.” From

(37) and the expansions (11), we get

&Y~(@, V)=jDIO– jexp(– j2@O)D12 (38)

all derivatives being evaluated in steady-state conditions.

Note that, for a slowly changing perturbation, Doz and Dlz

must be negligible, so that (38) can be reduced to

aYD ayD
DW=Y~(LJo, V)+VW– —

‘“0 au - (39)

Finally, we define the admittance

Y,(to, V)= G,(~, V)+ jBT(u, V)= Y~(a, V)+Y(o)

(40)

and remember the steady-state equilibrium condition

Y~(uo, V) = O, to obtain from (36)

or

(41)

I2
ay= 8BT 8G~ i?G~ 8BT—— ——
av =V av au – av aa

u=Im V—
ayT ayT2 “

(42)

au da

The stability condition u <0 then becomes

13GT 8BT 8BT (9GT >0
—— ——

av au av au
(43)

as was found by Hansson and Lundstrom [6] and previ-

ously by Kurokawa [5] (the latter for the case of a purely

resistive nonlinear device).

B. A4icrostrip Parametric Frequency Divider

In this section, we apply the stability analysis to the

nonlinear microstrip network whose topology is schemati-

cally illustrated in Fig. 2. This circuit was designed (in the
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Fig. 2. Transmission-line model of microstrip frequency divider.

TABLE I
MICROSTRIPDIMENSIONS

n. W,dth (mm) Ienqth (mm] . . w~dth (ml Length (m)

1 8.9 25.4 8 1.1 13.1

2 8.4 18.4 9 6.1 20.7

3 6.6 34.1 10 5.1 22.5

4 6.8 23.6 11 4.6 14.3

5 8.1 19.9 12 3.2 20.6

6 7.7 22,0 13 1.3 24.4

7 8.9 14.0 5UBSTRATE, I. 58 mm DUROID

way described in [9]) to act as a frequency divider by 2 in a

500-MHz band centered at 2.375 GHz (input frequency),

with an insertion loss in the 4–6-dB range at a nominal

input power level of 9 dBm. The divider geometry is given

in Table I in terms of microstrip widths and lengths; all

diode parameters including parasitic are, available from

the manufacturer’s catalog (ALPHA Industries Silicon

abrupt-junction varactor model DVH 6733-07).

For the present case, the nonlinear device is a microwave

varactor represented in the time domain by [10]

_i+l~[exP(=)-l]

+[c.o(l-~)-y+c.oexp(~)]~=o (44)

where

Is saturation current,

e electron charge,

x slope (or ideality) factor of current,

K~ Boltzmann’s constant,

T absolute temperature,

+ diffusion potential,

c TO zero-bias depletion-layer (transition) capacitance,

c DO zero-bias diffusion capacitance.

The varactor is unbiased’ and is thus drawn into forward

conduction during a considerable fraction of the RF cycle.

However, the calculations show that the forward voltage is

always definitely less than the diffusion potential, so that

no numerical ill-conditioning can occur in (44). Thus, (44)

can be used to obtain explicit expressions for the deriva-

tives; from (14), the coefficients are then found to be

A ~,p=Dop +{u+j((.’J +k@o)}Dlp -?l;Y(ti-ju+k@o),

ti~=l forp=O, O otherwise. (45)

Due to the exponential appearing in (44), the deriva-

tives usually have a considerably broader bandwidth than

35

7. ~

19 21 S1 41 61 61 71 01 S1 101 111

SIZE OF TRUNCFITEO SYSTEM

Fig. 3. Truncation error introduced when reducing the infinite solving
system to a finite size.

the steady-state regime. For the present purposes, ten

frequency components [9] were used in (4) to accurately

describe the equilibrium voltage and current waveforms; in

the same conditions, ND= 35 harmonics were required to

compute the derivatives with a comparable accuracy by the

Fourier expansions (11) truncated at p = ~ ND. Taking

N =50 in (27), which means a system of order 101, then

should allow the Nyquist plots ,to be computed with a

maximum error of about 7 percent (for O ~ w < @o),

according to (28). This prediction can be checked from Fig.

3, where we plot the deviation from periodicity of (25) in

the range [0, @o] against the size of the truncated system,

2N + 1. The deviation is defined as

~ = loo A(jtio)+ A(0)

A(0)
(46)

since, for the present case, n = 1 in (25). The figure shows

that Ds 8.1 percent for the size of 101, which is consid-

ered satisfactory for practical purposes.

In the following, we first discuss in some detail a large-

size solution of the stability problem based on the choices

ND= 35, N = 50, and making use of 250 frequency points

evenly spaced in the ~ange [0, tie] to draw the Nyquist

plots. This is mainly intended to show that our method can

indeed produce solutions~f high numerical accuracy (which

may be required in some critical cases), and that such

solutions may still be quite cheap when using a vectorized

code on a supercomputer. We then briefly comment on the

possible tradeoffs between numerical accuracy and com-

puter time requirements, and on the impact of this on the

physical accuracy of the solutions.

In view of the implementation of the numerical ap-

proach on a vector processor, we note the following.

1) The passive network admittance appearing in (14) can
be computed in parallel (in the pipeline sense) at all

frequencies (Q -t ktio) by existing vectorized programs for

microwave circuit analysis [11 ]. In this way, the time

required for admittance calculations is reduced by more

than one order of magnitude with respect to conventional

computational methods on scalar macliines [11].
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Fig. 4. Power transfer characteristic of parametric frequency divider

2) Because of (14) and (27), the system matrix has a

band structure with a total bandwidth 2ND+ 1. Thus, it

can be computed and stored diagonal-wise with a unique

vector operation. It is then rearranged column-wise (as

required for determinant computation) making use of the

gather-scatter capabilities of the vector processor.

3) Thanks to 1) and 2), the CPU time requirements are

practically reduced to determinant computation only. The

latter is clearly a highly vectorizable process which can be

carried out most efficiently by existing mathematical

routines (e.g., the vectorized library MAGEV on a Cyber

205).

As a result, a 250-point Nyquist plot can be found in

about 16 s on a Cyber 205 (in the case ND = 35, N = 50),

as opposed to the 545’s that are required to carry out the

same calculations on a CDC 7600, with a speedup factor of

34. In this way, the numerical method becomes practically

usable even for the most demanding applications.

Some results concerning the microstrip frequency divider

of Fig. 1 are reported below. Fig. 4 is a plot of the power

efficiency of the divider versus available input power at an

input frequency of 2.5 GHz. To obtain this curve, the

circuit of Fig. 1 was analyzed by the harmonic-balance

technique at several input-power levels. In practice, the

negative-slope section of the curve Al? is replaced by a

narrow hysteresis cycle, in much the same way as it is

found in the different, but related, case of parametric

multipliers [12]. This situation is closely matched by the

results of the stability analysis. Fig. 5 gives the Nyquist

plot for the nominal steady-state regime (point N in Fig.

4); the curve does not encircle the origin, denoting a stable

spurious-free condition. On the other hand, the Nyquist

plot for a point in the negative-slope region (point C in

Fig. 4) is shown in Fig. 6; in this case, we have one

clockwise encirclement, denoting the existence of one posi-

tive real eigenvalue. The corresponding equilibrium regime

is thus intrinsically unstable and cannot exist in practice.

The curves in Figs. 5 and 6 were computed over the full

range [0, tiO]. According to the theory developed in Section

II, the first half of each Nyquist plot (O ~ a ~ Qo/2),

which is represented by a solid line in the figures, should

be the exact mirror image (with respect to the real axis) of

the remainhg half, drawn by a dotted line. This condition

is very closely met by the diagrams of Figs. 5 and 6, which

POINT N
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Fig. 5. Nyquist plot for a stable equilibrium condition of the frequency
divider (nominal operating regime).

provides a clear check of the excellent accuracy of our

results.

The information presented so far clearly shows that the

computer time required to carry out a stability analysis can

be considerably reduced (with respect to the high-accuracy

solution discussed above) with no dramatic impairment of

the final results. First of all, it is quite obvious that the

calculations can actually be restricted to the range [0, tiO/2]

in routine applications, thus dividing by 2 the analysis cost.

Furthermore, Fig. 3 suggests that the size of the truncated

system can be reduced to some extent without a substantial

degradation of the Nyquist plot, since the periodicity error

actually drops more rapidly than one would predict, based

on (28). For instance, a system of size 41 (N= ND = 20)

yields a deviation from periodicity of about 10 percent in

the present case, which is still acceptable for practical

purposes. Finally, the number of frequency points used to

build the Nyquist plot can also be decreased, as can be

inferred from Figs. 5 and 6, provided that care be taken in

order not to loose control on the plot behavior around the

origin. In summary, it was found that a satisfactory stabil-

ity analysis of the parametric divider can be carried out on

a Cyber 205 in less than 1s, which is well below the time

required for a typical nonlinear design. Thus, the idea of

complementing existing general-purpose nonlinear CAD

packages (e.g., [7]) by an on-line facility for automatic

stability analysis becomes quite attractive.

A reduction of the number of harmonics to be dealt with

in the analysis also tends to waive the need for an accurate

description of both the nonlinear devices and the passive

network at extremely high microwave frequencies. As an

example, in the parametric divider case discussed so far,

carrying out the stability analysis with N = 20 means that

the highest frequency of interest is about 25 GHz, which is
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Fig. 6. Nyquist plot for an intrinsically unstable equilibrium condition

of the frequency divider (hysteresis region).

well within the reach of present-day modeling capabilities.

A substantially similar situation can be expected to occur

in the case of a higher fundamental frequency, since then

the number of significant harmonics of the steady-state

regime becomes smaller, which in turn limits the number of

spectral lines of the perturbation that must be accounted

for. Generally speaking, the ability to keep track of any

number of harmonics which is typical of the present com-

puter approach should allow the designer to find the best

compromise between physical and numerical accuracy in

each particular case.
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